Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Eur J Dent ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37995729

RESUMO

OBJECTIVES: The aim of this article was to investigate Osterix, ALP, and osteopontin expression in the compression and tension sides of alveolar bone after the application of normoxic/hypoxic-preconditioned GMSCs in rabbits (Oryctolagus cuniculus) induced with OMF. MATERIALS AND METHODS: Forty-eight healthy, young male rabbits were divided into four groups: [-] OMF; [+] OMF; OMF with GMSCs normoxic-preconditioned; and OMF and GMSCs hypoxic-preconditioned. The central incisor and left mandibular molar in the experimental animals were moved, the mandibular first molar was moved mesially using nickel titanium (NiTi) and stainless steel ligature wire connected to a 50 g/mm2 light force closed coil spring. Allogeneic application of normoxic or hypoxic-preconditioned GMSCs was used in as many as 106 cells in a 20 µL phosphate buffered saline single dose and injected into experimental animals' gingiva after 1 day of OTM. On days 7, 14, and 28, all experimental animals were euthanized. Osterix, ALP, and osteopontin expressions were examined by immunohistochemistry. RESULTS: Osterix, ALP, and osteopontin expressions were significantly different after allogeneic application of hypoxic-preconditioned GMSCs than normoxic-preconditioned GMSCs in the tension and compression of the alveolar bone side during OMF (p < 0.05). CONCLUSION: Osterix, ALP, and osteopontin expressions were significantly more enhanced post-transplantation of GMSCs with hypoxic-preconditioning than after transplantation of normoxic-preconditioned GMSCs in rabbits (O. cuniculus) induced with OMF.

2.
Eur J Dent ; 17(3): 881-888, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35728613

RESUMO

OBJECTIVE: Bone is a dynamic tissue that undergoes remodeling. During bone remodeling, there are transcription factors such as nuclear factor-activated T cells-1 (NFATc1), sclerostin, and tartrate-resistant acid phosphatase (TRAP) that are released for bone resorption. Metabolite from gingival mesenchymal stem cells (GMSCs) has the ability to activate proliferation, migration, immunomodulation, and tissue regeneration of bone cells and tissues. Furthermore, the aim of this study is to investigate the metabolite of GMSCs' effect on expression of NFATc1, TRAP, and sclerostin in calvaria bone resorption of Wistar rats. MATERIALS AND METHODS: Twenty male healthy Wistar rats (Rattus norvegicus), 1 to 2 months old, 250 to 300 g body were divided into four groups, namely group 1 (G1): 100 µg phosphate-buffered saline day 1 to 7; group 2 (G2): 100 µg lipopolysaccharide (LPS) day 1 to 7; group 3 (G3): 100 µg LPS + 100 µg GMSCs metabolite day 1 to 7; and group 4 (G4): 100 µg GMSCs metabolite day 1 to 7. Escherichia coli LPS was used to induce inflammatory osteolysis on the calvaria with subcutaneous injection. GMSCs metabolite was collected after passage 4 to 5, then injected subcutaneously on the calvaria. All samples were sacrificed on the day 8 through cervical dislocation. The expression of TRAP, NFATc1, and sclerostin of osteoclast in the calvaria was observed with 1,000× magnification. STATISTICAL ANALYSIS: One-way analysis of variance and Tukey honest significant different were conducted to analyze differences between groups (p < 0.05). RESULTS: The administration of GMSCs metabolite can significantly decrease TRAP, NFATc1, and sclerostin expression (p < 0.05) in LPS-associated inflammatory osteolysis calvaria in Wistar rats (R. norvegicus). There were significantly different TRAP, NFATc1, and sclerostin expressions between groups (p < 0.05). CONCLUSION: GMSCs metabolite decrease TRAP, NFATc1, and sclerostin expression in LPS-associated osteolysis calvaria in Wistar rats (R. norvegicus) as documented immunohistochemically.

3.
PLoS One ; 16(6): e0252302, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34143818

RESUMO

A potent therapy for the infectious coronavirus disease COVID-19 is urgently required with, at the time of writing, research in this area still ongoing. This study aims to evaluate the in vitro anti-viral activities of combinations of certain commercially available drugs that have recently formed part of COVID-19 therapy. Dual combinatory drugs, namely; Lopinavir-Ritonavir (LOPIRITO)-Clarithromycin (CLA), LOPIRITO-Azithromycin (AZI), LOPIRITO-Doxycycline (DOXY), Hydroxychloroquine (HCQ)-AZI, HCQ-DOXY, Favipiravir (FAVI)-AZI, HCQ-FAVI, and HCQ-LOPIRITO, were prepared. These drugs were mixed at specific ratios and evaluated for their safe use based on the cytotoxicity concentration (CC50) values of human umbilical cord mesenchymal stem cells. The anti-viral efficacy of these combinations in relation to Vero cells infected with SARS-CoV-2 virus isolated from a patient in Universitas Airlangga hospital, Surabaya, Indonesia and evaluated for IC50 24, 48, and 72 hours after viral inoculation was subsequently determined. Observation of the viral load in qRT-PCR was undertaken, the results of which indicated the absence of high levels of cytotoxicity in any samples and that dual combinatory drugs produced lower cytotoxicity than single drugs. In addition, these combinations demonstrated considerable effectiveness in reducing the copy number of the virus at 48 and 72 hours, while even at 24 hours, post-drug incubation resulted in low IC50 values. Most combination drugs reduced pro-inflammatory markers, i.e. IL-6 and TNF-α, while increasing the anti-inflammatory response of IL-10. According to these results, the descending order of effective dual combinatory drugs is one of LOPIRITO-AZI>LOPIRITO-DOXY>HCQ-AZI>HCQ-FAVI>LOPIRITO-CLA>HCQ-DOX. It can be suggested that dual combinatory drugs, e.g. LOPIRITO-AZI, can potentially be used in the treatment of COVID-19 infectious diseases.


Assuntos
Antibacterianos/farmacologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Hidroxicloroquina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antibacterianos/uso terapêutico , Antivirais/uso terapêutico , COVID-19/virologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , Combinação de Medicamentos , Hospitalização , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Hidroxicloroquina/uso terapêutico , Indonésia , Concentração Inibidora 50 , Pacientes Internados , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Fatores de Tempo , Células Vero , Carga Viral/efeitos dos fármacos
4.
Biochem Res Int ; 2021: 6685921, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628506

RESUMO

BACKGROUND: At the present time, COVID-19 vaccines are at the testing stage, and an effective treatment for COVID-19 incorporating appropriate safety measures remains the most significant obstacle to be overcome. A strategic countermeasure is, therefore, urgently required. AIM: This study aims to evaluate the efficacy and safety of a combination of lopinavir/ritonavir-azithromycin, lopinavir/ritonavir-doxycycline, and azithromycin-hydroxychloroquine used to treat patients with mild to moderate COVID-19 infections. Setting and Design. This study was conducted at four different clinical study sites in Indonesia. The subjects gave informed consent for their participation and were confirmed as being COVID-19-positive by means of an RT-PCR test. The present study constituted a randomized, double-blind, and multicenter clinical study of patients diagnosed with mild to moderate COVID-19 infection. MATERIALS AND METHODS: Six treatment groups participated in this study: a Control group administered with a 500 mg dose of azithromycin; Group A which received a 200/50 mg dose of lopinavir/ritonavir and 500 mg of azithromycin; Group B treated with a 200/50 mg dose of lopinavir/ritonavir and 200 mg of doxycycline; Group C administered with 200 mg of hydroxychloroquine and 500 mg of azithromycin; Group D which received a 400/100 mg dose of lopinavir/ritonavir and 500 mg of azithromycin; and Group E treated with a 400/100 mg dose of lopinavir/ritonavir and 200 mg of doxycycline. RESULTS: 754 subjects participated in this study: 694 patients (92.4%) who presented mild symptoms and 57 patients (7.6%) classified as suffering from a moderate case of COVID-19. On the third day after treatment, 91.7%-99.2% of the subjects in Groups A-E were confirmed negative by a PCR swab test compared to 26.9% in the Control group. Observation of all groups which experienced a significant decrease in virus load between day 1 and day 7 was undertaken. Other markers, such as CRP and IL-6, were significantly lower in all treatment groups (p < 0.05 and p < 0.0001) than in the Control group. Furthermore, IL-10 and TNF-α levels were significantly elevated in all treatment groups (p < 0.0001). The administration of azithromycin to the Control group increased CRP and IL-6 levels, while reduced IL-10 and TNF-α on day 7 (p < 0.0001) compared with day 1. Decreases in ALT and AST levels were observed in all groups (p < 0.0001). There was an increase in creatinine in the serum level of the Control, C, D, and E groups (p < 0.05), whereas the BUN level was elevated in all groups (p < 0.0001). CONCLUSIONS: The study findings suggest that the administration of lopinavir/ritonavir-doxycycline, lopinavir/ritonavir-azithromycin, and azithromycin-hydroxychloroquine as a dual drug combination produced a significantly rapid PCR conversion rate to negative in three-day treatment of mild to moderate COVID-19 cases. Further studies should involve observation of older patients with severe clinical symptoms in order to collate significant amounts of demographic data.

5.
Eur J Dent ; 15(2): 332-339, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33260232

RESUMO

OBJECTIVE: This study aims to confirm whether the GDMSCs isolated from rabbit's (Oryctolagus cuniculus) gingiva are mesenchymal stem cells (MSCs). MATERIALS AND METHODS: This study design was partly quasi-experimental with an observational design. GDMSCs were isolated from the gingiva of healthy male rabbits (O. cuniculus) (n = 2), 6 months old, and 3 to 5 kg of body weight. The specific cell surface markers of MSCs; clusters of differentiation (CD), namely, CD44, CD73, CD90, CD105, and CD200 expressions; and hematopoietic stem cell surface markers CD34 and CD45 were examined using flow cytometry and immunohistochemistry with immunofluorescence. The osteogenic differentiation of isolated GDMSCs was examined using alizarin red staining. RESULTS: GDMSCs in the fourth passage showed a spindle-like formation and fibroblast-like cells that attached to the base of the culture plate. GDMSCs were MSCs that positively expressed CD44, CD73, CD90, CD105, and CD200 but did not express CD34 and CD45 when examined using flow cytometry and immunohistochemical analysis. GDMSCs had osteogenic differentiation confirmed by calcified deposits in vitro with a red-violet and brownish color after alizarin red staining. CONCLUSION: GDMSCs isolated from the rabbits (O. cuniculus) were confirmed as MSCs in vitro documented using immunohistochemistry and flow cytometry. GDMSCs can differentiate into osteogenic lineage in vitro that may be suitable for regenerative dentistry.

6.
Vet World ; 13(10): 2097-2103, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33281342

RESUMO

BACKGROUND AND AIM: A skin wound in an animal must be cared for to prevent further health issues. Platelet-rich fibrin (PRF) and skin-derived mesenchymal stem cells (SMSCs) have been reported to have potential in increasing the rate of wound healing. This study aimed to analyze the distribution patterns and levels of platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF), and transforming growth factor-ß (TGF-ß) in PRF incorporated with SMSCs. MATERIALS AND METHODS: This study employed a true experiment (in vitro) design with post-test only performed in the control group alone. PRF and SMSCs were extracted from the blood and skin of 16 rabbits. SMSCs were characterized using immunocytochemistry to examine clusters of differentiation for 45, 73, 90, and 105. PRF was incorporated into the SMSCs and then divided into four groups (N=32/n=8): Group A (PRF only), Group B (PRF+SMSCs, incubated for 1 day), Group C (PRF+SMSCs, incubated for 3 days), and Group D (PRF+SMSCs, incubated for 5 days). Scanning electron microscopy was used to examine the distribution pattern of SMSCs between groups. The supernatant serum (Group A) and supernatant medium culture (Group D) were collected for the measurement of PDGF, IGF, VEGF, and TGF-ß using an enzyme-linked immunosorbent assay sandwich kit. An unpaired t-test was conducted to analyze the differences between Groups A and D (p<0.01). RESULTS: Group D had the most morphologically visible SMSCs attached to the PRF, with elongated and pseudopodia cells. There was a significant difference between the levels of growth factor in Groups A and D (p=0.0001; p<0.01). CONCLUSION: SMSCs were able to adhere to and distribute evenly on the surface of PRF after 5 days of incubation. The PRF incorporated SMSCs contained high levels of PDGF, IGF, VEGF, and TGF- ß, which may prove to have potential in enhancing wound healing.

7.
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1135491

RESUMO

Abstract Objective: To show the cytotoxicity of Porphyromonas gingivalis lipopolysaccharide (LPS) on human umbilical cord mesenchymal stem cells (HUCMSCs) to better understand the characteristics for its application in regenerative procedures under periodontopathogen LPS influence. Material and Methods: Ultrapure Porphyromonas gingivalis LPS was used in this study. This research used a frozen stock HUCMSCs, previously confirmed by flow cytometry. The biological characteristics, such as cell morphology, proliferation, and protein expression, were screened. To check the cytotoxicity, HUCMSCs were cultured and divided into two groups, the control group and LPS group with various concentrations from 25 to 0.39 µg/mL. MTT assay was done and the cells were observed and counted. The significance level was set at 5%. Results: The percentage of living HUCMSCs on LPS group were not significantly different among concentrations (p>0.05) from 25 to 0.39 µg/mL, even though there were slight mean decrease between groups, but they were not significant. The duration of 24 hours of exposure of LPS does not significantly lower HUCMSCs viability. Conclusion: LPS does not affect the viability of HUCMSCs. The lower the concentration of LPS, the higher the viability of HUCMSCs.


Assuntos
Humanos , Cordão Umbilical , Lipopolissacarídeos , Porphyromonas gingivalis , Citotoxicidade Imunológica/imunologia , Células-Tronco Mesenquimais , Análise de Variância , Citometria de Fluxo , Indonésia/epidemiologia
8.
Eur J Dent ; 13(3): 432-436, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31795007

RESUMO

OBJECTIVE: Medicinal signaling cells metabolite (MSCM) is often considered medical waste even though it contains abundant growth factors, and advantageous micro- and macromolecules that can accelerate healing in oral ulcer.The purpose of this experimental laboratory study was to analyze the biocompatibility and potential of MSCM, (oral based) to accelerate healing in oral ulcer (in vitro). MATERIALS AND METHODS: MSCM (oral based) was obtained by mixing 10 mL of MSCM and 2% of carboxymethyl cellulose sodium. 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (or MTT assay) was obtained using human gingival somatic cell culture to examine cell viability treated with MSCM (oral based). Fourier transform infrared spectroscopy was performed to know the functional structure and composition of MSCM (oral based). To know the elemental composition of MSCM (oral based), energy-dispersive X-ray analysis was performed. Scratch test was performed to know the ability of MSCM (oral based) to increase human somatic cell proliferation. RESULTS: MSCM (oral based) has good cell viability. MSCM (oral based) administration accelerated the proliferation of human somatic cell culture after 12-hours in vitro. MSCM (oral based) has carboxylic acids and derivatives chemical bond. MSCM (oral based) mostly contained carbon and potassium but did not contain heavy metal substances. CONCLUSIONS: MSCM (oral based) has a biocompatible and potential ability to accelerate healing in oral ulcer in vitro. It would be useful in daily clinical practice in treating traumatic oral ulcer.

9.
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1056832

RESUMO

Abstract Objective: To investigate the regeneration of rat's salivary gland diabetic defect after intraglandular transplantation of Human Dental Pulp Stem Cells (HDPSCs) on acinar cell vacuolization and Interleukin-10 (IL-10). Material and Methods: HDPSCs isolated from the dental pulp of first premolars #34. HDPSCs from the 3rd passage was characterized by immunocytochemistry of CD73, CD90, CD105 and CD45. Twenty-four male Wistar rats, 3-month-old, 250-300 grams induced with Streptozotocin 30 mg/kg body weight to create diabetes mellitus (DM) divided into 4 groups (n=6); positive control group on Day-7; positive control group on Day-14; treatment group Day-7 (DM+5.105HDPSCs); treatment group on Day-14. On Day-7 and Day-14, rats were sacrificed. Histopathological examination performed to analyze acinar cells vacuolization while Enzyme-linked Immunoabsorbent Assay to measure IL-10 serum level. Data obtained were analyzed statistically using multiple comparisons Bonferroni test, Kruskal Wallis, Shapiro-Wilk and Levene's test result Results: The highest acinar cell vacuolization found in control group Day 14 (0.239 ± 0.132), meanwhile the lowest acinar cell vacuolization found in treatment group Day 7 (0.019 ± 0.035) with significant difference (p=0.003). The highest IL-10 serum level found in treatment group Day 14 (175.583 ± 120.075) with significant difference (p=0.001) Conclusion: Transplantation of HDPSC was able to regenerate submandibular salivary gland defects in diabetic rats by decreasing acinar cell vacuolization and slightly increase IL-10 serum level.


Assuntos
Animais , Ratos , Interleucina-10 , Ratos Wistar , Células-Tronco Totipotentes , Diabetes Mellitus , Células Acinares , Glândulas Salivares , Células-Tronco , Imuno-Histoquímica/instrumentação , Estatísticas não Paramétricas , Polpa Dentária , Indonésia
10.
F1000Res ; 7: 1134, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30430007

RESUMO

Background: Alveolar bone defect regeneration has long been problematic in the field of dentistry. Gingival stromal progenitor cells (GSPCs) offer a promising solution for alveolar bone regeneration. In order to optimally differentiate and proliferate progenitor cells, growth factors (GFs) are required. Platelet rich fibrin (PRF) has many GFs and can be easily manufactured. Core-binding factor subunit-α1 (CBF-α1) constitutes a well-known osteogenic differentiation transcription factor in SPCs. Sox9, as a chondrogenic transcription factor, interacts and inhibits CBF-α1, but its precise role in direct in vitro osteogenesis remains unknown. GSPCs cultured in vitro in PRF to optimally stimulate osteogenic differentiation has been largely overlooked. The aim of this study was to analyze GSPCs cultured in PRF osteogenic differentiation predicted by CBF-α1/Sox9. Methods: This study used a true experimental with post-test only control group design and random sampling. GPSCs isolated from the lower gingiva of four healthy, 250-gram, 1-month old, male Wistar rats ( Rattus Novergicus) were cultured for two weeks, passaged every 4-5 days. GSPCs in passage 3-5 were cultured in five M24 plates (N=108; n=6/group) for Day 7, Day 14, and Day 21 in three different mediums (control negative group: αModified Eagle Medium; control positive group: High Glucose-Dulbecco's Modified Eagle Medium (DMEM-HG) + osteogenic medium; Treatment group: DMEM-HG + osteogenic medium + PRF). CBF-α1 and Sox9 were examined with ICC monoclonal antibody. A one-way ANOVA continued with Tukey HSD test (p<0.05) based on Kolmogorov-Smirnov and Levene's tests (p>0.05) was performed. Results: The treatment group showed the highest CBF-α1/Sox9 ratio (16.00±3.000/14.33±2.517) on Day 7, while the lowest CBF-α1/Sox9 ratio (3.33±1.528/3.67±1.155) occurred in the control negative group on Day 21, with significant difference between the groups (p<0.05). Conclusion: GSPCs cultured in PRF had potential osteogenic differentiation ability predicted by the CBF-α1/sox9 ratio.


Assuntos
Regeneração Óssea , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Gengiva/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Fibrina Rica em Plaquetas , Fatores de Transcrição SOX9/metabolismo , Animais , Células Cultivadas , Gengiva/citologia , Masculino , Células-Tronco Mesenquimais/citologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...